
Two-variable identities in groups and Lie algebras ∗

Fritz Grunewald

Math. Institut, Heinrich Heine Universität,

40225 Düsseldorf, GERMANY

e-mail: grunewald@math.uni-duesseldorf.de

Boris Kunyavskĭı†

Dept of Math. and Computer Science, Bar-Ilan University,

52900 Ramat Gan, ISRAEL

e-mail: kunyav@macs.biu.ac.il

Daniela Nikolova

Insitute of Math., Bulgarian Academy of Sciences,

Sofia, BULGARIA

e-mail: daniela@moi.math.bas.bg

Eugene Plotkin
†

Dept of Math. and Computer Science, Bar-Ilan University,

52900 Ramat Gan, ISRAEL

e-mail: plotkin@macs.biu.ac.il

Abstract

We study two-variable Engel-like relations and identities characterizing finite dimen-
sional solvable Lie algebras and, conjecturally, finite solvable groups, and introduce some
invariants of finite groups associated to such relations.

∗This research was supported by the Israel Science Foundation founded by the Israel Academy of Sciences
and Humanities — Center of Excellence Program.

†Partially supported by the Ministry of Absorption (Israel) and the Minerva Foundation through the Emmy
Noether Research Institute of Mathematics.

1 Motivation

Our primary interest in problems discussed in the present paper came from a paper by Segev [25]
where the Margulis–Platonov conjecture had been related to some properties of the commuting
graph of a finite simple group. (Given a finite group F , its commuting graph Γ(F) has vertices
indexed by the elements of F different from 1; x, y ∈ F are joined by an edge if and only if
they commute.) In a more recent paper [26] the expected properties of this graph have been
proved.

In its simplest form, the Margulis–Platonov conjecture asserts that if G is any (absolutely
almost) simple linear algebraic group defined over a number field k then the group of rational
points G(k) contains no non-central normal subgroups if and only if the same is true for all
groups G(kv) where v runs over all places of k and kv stands for the completion of k at v
(see [22, 9.1]). The most difficult case of this conjecture is that of anisotropic groups of type
An. In the case of the inner forms, Potapchik and Rapinchuk [24] reduced the conjecture to
a purely algebraic statement that the multiplicative group of any finite dimensional division
k-algebra has no non-abelian finite simple quotients. For this purpose, Segev proved [25] that
if D is a finite dimensional division algebra over an arbitrary field and F is a finite simple
non-abelian group whose commuting graph Γ(F) is either balanced (see [25] for the definition),
or is of diameter greater than 4, then F cannot be a quotient of D∗. In [26], it is proved that
the commuting graph of any finite non-abelian simple group is either balanced, or of diameter
greater than 4. This completes the proof.

All above shows that Γ(F) is a powerful invariant of F . After Segev’s lecture on this topic,
B. Plotkin suggested two natural generalizations of the commuting graph of a group. Namely,
it is natural to consider graphs of nilpotency and solvability of an arbitrary group G. To define
them, we need to formulate conditions of nilpotency and solvability as two-variable relations
between the elements of G. This is done in Section 2. In Section 3 we consider Lie-algebraic
analogues of these conditions. In Section 4 we focus on the case of linear algebraic groups and
groups of their rational points. In Section 5 we return to the case of finite groups which was
the main motivation for this paper.

Notation. If G is a group, x, y ∈ G, let [x, y] = x−1y−1xy. If L is a Lie algebra, x, y ∈ L, we
use the same symbol [x, y] for the Lie product.

Acknowledgements. This work was done while D. Nikolova was visiting Bar-Ilan Univer-
sity and Ben-Gurion University of the Negev, Israel, and the National University of Ireland,
Galway. The paper was finished while B. Kunyavskĭı and E. Plotkin were visiting SFB 343
“Diskrete Strukturen in der Mathematik” (University of Bielefeld). The authors gratefully ap-
preciate hospitality and support of these institutions. We thank M. Borovoi, R. Farnsteiner,
A. Premet, and N. Vavilov for very useful discussions and correspondence. Our special thanks
go to B. Plotkin whose ideas and encouragement were indispensable, and to A. Feldman and
R. Shklyar for their help in computer experiments.

2

2 New invariants of finite groups

Our primary goal is to introduce some new invariants of a group G associated to two-variable
relations between elements of G.

Definition 2.1 Let G be an arbitrary group, and let ρ be a binary relation on G. We define
a (directed) graph Γ+ = Γ+

ρ (G) (ρ-graph of G) as follows: the vertices of Γ+ are indexed by
the elements of G different from 1, and vertices g, h form an edge directed from g to h if and
only if g 6= h and gρh. We denote by Γ the non-directed graph obtained from Γ+ by forgetting
orientation and deleting multiple edges.

Remark. If ρ is symmetric, we only consider the non-directed graph Γρ(G).
Example. If ρ is the commuting relation (i.e. gρh if and only if gh = hg), we get the commuting
graph of G studied in [25].

First we consider “nilpotency relations”. Denote Engel words by v1 = v1(x, y) = [x, y],
v2 = [v1, y], . . . , vn = [vn−1, y],

Definition 2.2 Let G be an arbitrary group. We say that elements g, h ∈ G are in n-Engel
relation νn if vn(g, h) = 1. Elements g, h are said to be in nilpotency relation ν if they are in
n-Engel relation for some n.

Recall that a finite group G is nilpotent if and only if the identity vn(x, y) ≡ 1 holds in G
for some n, or, in terms of the above definition, if and only if gνh for all g, h ∈ G. Note that
vk ≡ 1 implies vl ≡ 1 for all l > k.

Definition 2.3 The graph Γν(G) (resp. Γ+
ν (G)) is called the nilpotency graph (resp. directed

nilpotency graph) of G. The diameters of these graphs are denoted by dν(G) and d+
ν (G), re-

spectively. (If there are vertices g, h with no path from g to h, the diameter is defined to be
infinite.)

Problem 2.4 To investigate nilpotency graphs of finite simple groups and to estimate their
diameters.

We turn now to “solvability relations”. Here we immediately encounter the following

Problem 2.5 Find a sequence of words {en(x, y)}∞n=1 in two variables x, y such that a finite
group G is solvable if and only if for some n the identity en ≡ 1 holds in G.

Remark. Similarly to the nilpotency case, we require that the identity ek ≡ 1 would imply
el ≡ 1 for all l > k.

With such a sequence at our disposal, we could define the solvability relation in G and the
corresponding graphs repeating, word by word, Definitions 2.2–2.3.

There is strong evidence that Problem 2.5 has a positive solution, and finite solvable groups
can be characterized by two-variable identities.

3

Theorem 2.6 [28], [8] Let G be a finite group in which every two elements generate a solvable
subgroup. Then G is solvable.

However, Theorem 2.6 does not provide any explicit two-variable laws for finite solvable
groups. We present several candidates for such en’s.

Definition 2.7 Let {en(x, y)}∞n=1 be defined by one of the following three formulae:

e1 = [x, y],
e′1 = [e1, x], e′′1 = [e1, y], e2 = [e′1, e

′′

1], . . .
e′n = [en, x], e′′n = [en, y], en+1 = [e′n, e′′n], . . .

(1)

e1 = [x, y], e2 = [xe1x
−1, ye1y

−1], . . . , en+1 = [xenx−1, yeny
−1], . . . (2)

e′1 = x, e′′1 = y, e1 = [e′1, e
′′

1], . . .
e′n+1 = [[e′n, e′′n], e

′

n], e′′n+1 = [[e′′n, e′n], e′′n], en+1 = [e′n+1, e
′′

n+1], . . .
(3)

We call sequences (1)–(3) reasonable.

Note that for all reasonable sequences, ek ≡ 1 implies el ≡ 1 for all l > k.

Remark. There is a natural way to produce reasonable sequences generalizing (2). Namely, let
w be a word in x, y, x−1, y−1. Define

ew
1 = w, ew

n+1 = [xew
n x−1, yew

ny−1],

A clever choice of w might lead to a sequence with good properties. We shall discuss the matter
in detail in our forthcoming paper.

Definition 2.8 Fix a reasonable sequence {ei}. Let G be an arbitrary group. We say that
elements g, h ∈ G are in relation σn (with respect to {ei}) if en(g, h) = 1. Elements g, h are
said to be in solvability relation σ if and only if they are in relation σn for some n. We call
σ-graph Γσ(G) (resp. Γ+

σ (G)) the solvability graph (resp. the directed solvability graph) of G.

To justify the above definition, one has to prove the following analogue of the Engel property.

Conjecture 2.9 (B. Plotkin) Let {ei} be a reasonable sequence. A finite group G is solvable
if and only if for some n the identity en ≡ 1 holds in G.

Clearly, if G is solvable of derived length n, then en ≡ 1 holds in G.

Remark. There is another way to define nilpotency and solvability relations: g, h ∈ G are
in relation ν (resp. σ) if and only if the subgroup of G generated by g and h is nilpotent
(resp. solvable). Such relations have an advantage to be symmetric and disadvantage to be less
constructive. We do not consider them in the present paper. We refer the reader to [23] for yet

4

another definition of the solvability graph and relationship with abstract algebraic geometry
over groups.

There are several results concerning characterization of solvable groups in terms of two-
variable identities [19], [20], [5]. Namely, it was proved in [19], [20] that if a finite group G
satisfies for some n the identity v2 ≡ vn, where {vi} is the sequence of Engel words, then G is
solvable. However, it is easy to find a solvable group satisfying no identity of the form v2 ≡ vn.
For example, take G a finite nilpotent group of class 3 such that the identity v2 ≡ 1 does not
hold in G. Since v3 ≡ 1, the group G cannot satisfy any identity of the form v2 ≡ vm. However,
G is solvable.

In [5] it was proved that the identity v3 ≡ vn can hold in certain finite simple groups such
as PSL(2, 4), PSL(2, 8), etc. Let us also mention a pioneer result of N. Gupta [10]: any finite
group satisfying the identity v1 ≡ vn is abelian.

At this point, let us introduce some more new invariants of finite groups. Our first remark
is that given any infinite sequence of distinct words in m variables {wi(x1, . . . , xm)}∞i=1, any
finite group G satisfies a law of the type

wk(x1, . . . , xm) ≡ wl(x1, . . . , xm).

for some k and l. (Indeed, the set of values of the wi’s is finite.)
The next definition goes back to [11]. It generalizes the notion of Engel depth (cf. [4], [5]).

Definition 2.10 The pair (k, l) for which the identity vk(x, y) ≡ vl(x, y) holds, with minimal
k + l, is called the Engel invariant of G.

Remark. To justify the above definition, one has to check that the pair (k, l) with the required
properties is unique. Indeed, suppose that we have two Engel identities in G: ek ≡ el and
em ≡ en with k < m < n < l and k + l = m + n minimal with this property.

We have em(x, y) = en(x, y) for all x, y. Plug el−n(x, y) instead of x. We get el−n+m(x, y) =
el(x, y) for all x, y. Hence ek(x, y) = el−n+m(x, y) for all x, y. Therefore, because of minimality
of k + l, we have k + (l− n + m) ≥ k + l, i.e. m− n ≥ 0, contradiction. The Engel invariant is
thus well defined.

This remark also shows that the number k in Definition 2.10 coincides with the Engel depth
of G as defined in [4], [5]. However, the second parameter l is also important as the following
beautiful result shows [11, Th. 4.3]: with the notation of Definition 2.10, if k + l is odd then G
is solvable.

Problem 2.11 To compute Engel invariants for particular classes of finite groups.

In [18], Engel invariants have been computed in some groups, classes of groups and varieties
of groups such as some groups of small order; the class of dihedral groups Dp where p is an
odd prime; the solvable locally finite varieties of groups AkAl for k and l powers of one and
the same prime number p, and for k and l coprime integers; the infinite series of simple groups
(the alternating groups An for n > 5 and the special projective groups PSL(2, q) for some of
the first groups in the series).

5

One can consider the analogues of Definition 2.10 and Problem 2.11 with the Engel sequence
replaced by one of reasonable (in the sense of Definition 2.7) sequences.

Definition 2.12 Let {ei} be a reasonable sequence. The pair (k, l) for which the identity
ek(x, y) ≡ el(x, y) holds, with minimal k + l, is called σ-invariant of G. If there are several
such pairs, we choose among them the pair with minimal k and define it to be σ(G).

Problem 2.13 To compute σ-invariants for particular classes of finite groups.

3 Lie-algebraic analogues

On replacing commutators by Lie products (and 1 by 0), we get sequences similar to (1)–(3)
for Lie algebras. We also call them reasonable. Here the situation is much more clear (at least,
in finite dimensional case). We restrict ourselves by considering the Lie analogue of sequence
(1).

Theorem 3.1 Let L be a finite dimensional Lie algebra over an infinite field k of characteristic
p > 5. Let {ei} be defined by formulae (1). Then L is solvable if and only if for some n the
identity en ≡ 0 holds in L.

Proof. Obviously, if L is solvable then it satisfies an identity of the form en(x, y) ≡ 0 since
for any X, Y ∈ L the value en(X, Y) belongs to the corresponding term of the derived series.
Conversely, let L satisfy the identity en ≡ 0. First suppose that k is algebraically closed. If L is
not solvable then Lss = L/rad(L) is semisimple and non-zero (here rad(L) denotes the solvable
radical of L, i.e. its maximal solvable ideal). If char(F) = 0, let us denote by {Eα, Hα, E−α}
the standard basis of sl2. Then [Eα, E−α] = Hα, [Hα, Eα] = 2Eα, [Hα, E−α] = −2E−α. Set
x = Eα, y = E−α. Then

e1 = Hα, e′1 = 2Eα, e′′1 = −2E−α,
e2 = −4Hα, . . . ,

i.e. en = mHα with m 6= 0. Thus for any n we have en(Eα, E−α) 6= 0.
Let now char(k) = p > 5. First assume that L is restricted (see [27, 2.1] for the definition;

we refer to the same book for all background material in modular Lie algebras). Then we can
use the classification theorem of [2] in order to mimic the proof in characteristic zero. To be
more precise, [2] says that all simple restricted Lie algebras are given by the list predicted by
the Kostrikin–Shafarevich conjecture. One can then verify that each of such algebras contains
sl2. For the algebras of classical type this is obvious. As to the algebras of Cartan type, one has
to consider them as graded Lie algebras (see [27, Ch. 4]) and notice that the zero component
L0 contains sl2. Indeed, S(n; 1)0 ∼= sln ([27, Prop. 3.3.4]), H(2r; 1)0

∼= sp2r ([27, Prop. 4.4.4]),
K(2r +1; 1)0 contains sp2r ([27, Ex. 4.5.3]), and W (n; 1)0

∼= gln ([27, Prop. 2.2.4]). In this last
case for n = 1 one has to consider the algebra L−1⊕L0⊕L1; one can show that it is isomorphic
to sl2.

If L is not restricted, one needs more subtle arguments.

6

Lemma 3.2 Every simple Lie algebra L defined over a field of characteristic p > 5 contains a
subalgebra S with quotient isomorphic to sl2.

1

Proof. Assume the contrary. Let L denote a counter-example of minimal dimension to the
assertion of the lemma. Let L◦ denote a maximal subalgebra of L. We wish to show that L◦ is
solvable. If not, then Lss = L◦/rad(L◦) is a non-zero semisimple Lie algebra. By [1, Th. 9.3], Lss

contains a simple algebra S. Let S1 = π−1(S) be the preimage of S with respect to the natural
projection π: L◦ → Lss, we have S1/ker π ∼= S. Since dim S < dim L, there is a subalgebra
T ⊆ S and an ideal J in T such that T/J ∼= sl2. Denote T1 = π−1(T), J1 = π−1(J). We have
T1/J1

∼= sl2, contradiction. We thus proved that L◦ is solvable. By [29, Cor. 1.4], L must be
isomorphic either to sl2, or to the Zassenhaus algebra W (1; m). In the first case we are done.
In the second case L is graded, and we set S = L−1 ⊕ L0 ⊕ L1. Each of the three components
is one-dimensional, and a straightforward computation using the table of structure constants
shows that S ∼= sl2. The lemma is proved. 2

Let us continue the proof of the theorem. We have a Lie algebra L satisfying the identity
en(x, y) ≡ 0. We wish to prove that L is solvable. Assume the contrary. Then, arguing as
in the proof of Lemma 3.2 (i.e. considering L/rad(L) and using [1, Th. 9.3]), we conclude
that L has a simple subalgebra S. From Lemma 3.2 it follows that S (and hence L) has a
subfactor isomorphic to sl2. Since identities remain true in sub- and factor-algebras, en ≡ 0
must hold in sl2, contradiction. We thus proved the “if” part of the theorem in the case where
k is algebraically closed.

Let now k be an arbitrary infinite field, and suppose that L is a Lie algebra over k satisfying
an identity w(x, y) ≡ 0, where w stands for one of the en’s. We wish to prove that the identity
w(x, y) ≡ 0 also holds in the Lie algebra L = L ⊗k k̄ defined over an algebraic closure k̄ of k.
Indeed, let {E1, . . . , Ed} denote a k-basis of L. On writing arbitrary x, y ∈ L with respect to
this basis: x =

∑

αiEi, y =
∑

βiEi, we translate the identity w(x, y) ≡ 0 into identities of the
form

Pi(α1, . . . , αd, β1, . . . , βd) = 0, i = 1, . . . , d,

where Pi are polynomials. Since all the values of each Pi are zero and k is infinite, we conclude
that the Pi’s are zero polynomials (see, for example, [15, Ch. IV, §1, Cor. 1.7]). Let now x̄, ȳ ∈ L
are arbitrary elements. On writing them with respect to the same basis {Ei} (with coefficients
from k̄) and plugging into the expression for w(x̄, ȳ), we obtain the same polynomials Pi as
coefficients at Ei. But we have already proved that they are zero. Hence w(x̄, ȳ) = 0.

The theorem is proved. 2

Note one more result in the same spirit (cf. [10], [11], [19], [20], [5] for the group case).
Recall that {vi} is the Engel sequence, vi(x, y) = [[[x, y], y] . . . y] (for brevity we denote this
expression by [x, yi]).

Proposition 3.3 Let L be a finite dimensional Lie algebra over a field of characteristic dif-
ferent from 2 such that the identity vk ≡ vl holds in L. Then L is solvable. Moreover, if L
satisfies v1 ≡ vl then L is abelian.

1A. Premet informed us that one can modify the proof to be valid for all p > 2.

7

Proof. As in the preceding theorem, we can reduce to the case where the ground field is
algebraically closed. First consider the characteristic zero case. Again, if L is not solvable
then Lss = L/rad(L) is non-zero and contains sl2. Set x = Hα, y = Eα. We have v1 = 2Eα,
v2 = 4Eα, . . . , thus vk ≡ vl leads to 2kEα = 2lEα, contradiction. In the positive characteristic,
we just reproduce the arguments from Theorem 3.1.

Let now v1 ≡ vl. We proceed by induction on dim L. If dim L = 1 then L is abelian.
Suppose that all subalgebras of dimension less than n = dim L are abelian. By the first part
of the proposition, L is solvable. Hence L′ = [L, L] is of dimension less than n and therefore is
abelian. We have to prove that L′ = 0. Take any [x, z] ∈ L′. By assumption, [x, z] = [x, zl].
Let z = [x, y]. Then [x, [x, y]] = [x, [x, y]l] = 0 since L′ is abelian. Therefore [[x, y], x] = 0 and
hence [[y, x], x] = 0 and [y, xl] = 0. Applying our assumption once again we get [y, x] = 0, so
that L′ = 0 and thus L is abelian. 2

Remark. As in the case of finite groups, one can note that the identity v2 ≡ vl gives only a
sufficient condition for a finite dimensional Lie algebra to be solvable.

4 Identities in linear groups

One of the most promising approaches to the proof of Conjecture 2.9 is related to the study of
identities in finite linear groups. To be more precise, the following question seems to be critical:
let {ei} denote one of the reasonable sequences (see formulae (1)–(3)), and let G = PSL(2, p),
p > 3; is it true that neither of the formulae en is an identity in G? (See the next section for more
details.) It is known [21], [17, Cor. 52.12] that any finite group G has a finite basis of identities
but for PSL(2, p) the explicit bases are known only for p ≤ 13 (see [6] and references therein).
Clearly the identities of PSL(2, p) heavily depend on p because PSL(2, Z) has no identities at
all. Thus looking at G = PSL(2, ·) as at a group scheme, one can say that different values of
G have different identities. On the other hand, if an affine group scheme G is assumed to be
either abelian, or nilpotent, or solvable, then all its values inherit the corresponding identities.
Therefore, given a linear group G ⊂ GL(n, k) isomorphic to the group G(k) of k-rational points
of an affine group scheme G, it is important to distinguish its “structural” identities (i.e. coming
from G) from those arising from the special choice of k.

We now make all above considerations more precise. First introduce some notation. Given
an affine group scheme G, we denote

• µ:G × G → G, multiplication,

• i:G → G, inversion,

• e: E → G, unit (where E = {e} is the final object in the category of affine group schemes),

• c:G → G, constant morphism, c(g) = e, (i.e. c:G → E
e
→ G, where G → E is the unique

morphism from G to E),

• id:G → G, identity,

8

• t:G × G → G × G, transposition, i.e. t = (pr 2, pr 1).

We wish to define the commutator u:G × G → G. Let µ̃:G × G × G × G → G be the

composition (G × G)× (G × G)
µ×µ
−→ G × G

µ
→ G. We then define u as the composite morphism

u:G × G
(i×i,id×id)
−→ G × G × G × G

µ̃
→ G.

Observation. A group scheme G is commutative if and only if u = c.

Remark. Of course, one can express the commutativity condition without using commutators,
just saying that µ ◦ t = µ.

We now want to generalize the above construction. We define, by unduction,

e1 = u = [x, y] = x−1y−1xy, . . .
en+1 = [[en, x], [en, y]], . . .

(4)

More formally, we first define e′n = [en, x] and e′′n = [en, y] as follows:

e′n : G × G
(en,pr

1
)

−→ G × G
u
→ G,

e′′n : G × G
(en,pr

2
)

−→ G × G
u
→ G.

(5)

Then en+1 is defined as the composite morphism

en+1:G × G
(e′

n
,e′′

n
)

−→ G × G
u
→ G.

The two other reasonable sequences (see formulae (2)–(3)) can be defined in a similar way.

Proposition 4.1 Let G be a connected affine algebraic group over a field k. Then G is solvable
if and only if en = c for some n ≥ 1.

Proof. Necessity. We prove by induction that the image of en lies in the n-th derived subgroup
DnG of G. For n = 1 this is obvious. Since DnG is a normal subgroup in G, by induction
hypothesis e′n and e′′n each map G × G into DnG. Hence en+1 maps G × G into Dn+1G.

Sufficiency. First note that the condition en = c is equivalent to the fact that all groups
G(A), where A is any k-algebra, satisfy the identity en(x, y) ≡ 1. This property is thus heredi-
tary with respect to sub- and factor-groups. Suppose that G satisfies en = c but is not solvable.
In view of the above remark, the quotient Gred = G/Gu, where Gu stands for the unipotent
radical of G, is a non-trivial reductive group satisfying en = c. Furthermore, its derived group
Gss = [Gred,Gred] is a non-trivial semisimple group satisfying the same property. Hence the
k-group SL2 being a subgroup of Gss must satisfy the same law. Its quotient PSL2 thus also
satisfies en = c. Therefore, the identity en(x, y) ≡ 1 must hold in all groups PSL2(A) where A
is a k-algebra, that is impossible [14]. 2

We now go over to a “structural” analogue of the Engel law. Define v1 = u and, by induction,

vn+1:G × G
(vn,pr

2
)

−→ G × G
u
→ G.

9

Proposition 4.2 Let G be a connected affine algebraic group over a field k. Then G is nilpotent
if and only if vn = c for some n ≥ 1.

Proof. Let CnG denote the n-th term of the lower central series. Then vn maps G × G into
CnG. This proves the “only if” part. Let now vn = c. Then, as in the proof of Proposition
4.1, we conclude that G is solvable. Hence G = G(k̄) is solvable (here k̄ stands for a (fixed)
algebraic closure of k). According to [7, IV, 4.1.5], we only need to prove that G is nilpotent.
Since G is solvable and connected, it is isomorphic to a semi-direct product T n U where T
is a torus and U is nilpotent. If T = {e} or U = {e} then G is nilpotent. Hence we may
assume that dim T ≥ 1 and dim U ≥ 1. If T is central in G then G is nilpotent [3, 10.6(3)].
If not, U contains a one-dimensional subgroup U1 that does not commute with T . Since k̄ is
algebraically closed, U1 is isomorphic to the additive group Ga. Hence T acts on U1 as follows:
t−1ut = λ(t)u where u ∈ U1, t ∈ T , λ: T → Gm is a character of T (cf. [3, 10.10]). Thus
t−1u−1t = λ−1u−1 and t−1u−1tu = λ−1, so [u, t] = λ(t) 6= 1 for u 6= 1, t 6= 1. By induction, we
obtain vn(u, t) = λ 6= 1 for any n, which is a contradiction. 2

5 Main conjecture

In this section we return to Conjecture 2.9. Our first observation is that by standard arguments
one can reduce to considering only a finite number of series of finite simple groups. To be more
precise, one can easily derive Conjecture 2.9 from the following

Conjecture 5.1 Let G be one of the following groups:

1. PSL(2, p) (p = 5 or p ≡ ±2 (mod 5), p 6= 3),

2. PSL(2, 2p),

3. PSL(2, 3p) (p odd),

4. Sz(2p) (p odd),

5. PSL(3, 3).

Let {ei} be one of sequences (1)–(3). Then neither of identities en ≡ 1 holds in G.

Indeed, according to [28], the list of Conjecture 5.1 is exactly the list of minimal finite non-
solvable groups (that is, the groups whose every subgroup is solvable). On our way to proving
Conjecture 5.1, we proceed by case-by-case computer investigation. In order to prove that
en ≡ 1 is not a law in G, it is enough to show that for some k < l the equation ek(x, y) = el(x, y)
has a non-trivial solution (x0, y0) ∈ G × G (non-trivial means that ek(x0, y0) = el(x0, y0) 6= 1;
by the construction of the sequences, it suffices to check that the right-hand side does not equal
1).

10

The case G = PSL(3, 3) is the easiest one. Say, if the en’s are taken from sequence (1), the
matrices

x0 =





0 0 1
0 1 1
2 1 1



 , y0 =





1 0 1
0 2 0
0 0 2





give a solution to the equation e17 = e21, and thus en ≡ 1 is not a law in PSL(3, 3).
For G = PSL(2, p), computer search gives a solution to e2 = e4 (where the ei’s are taken

from sequence (2)) for all p < 1000 except for p = 293 (as in chess, e2− e4 usually wins!). The
equation e3 = e5 has a solution in PSL(2, p) for all p < 1000, and this result remains true for
all p < 1500 except, possibly, for p = 1163 for which calculations take too much time.

See Appendix for more details concerning numerical experiments.
To conclude, we present the following model case that can be viewed as a testing ground

for proving Conjecture 5.1.

Proposition 5.2 Let the sequence {ei} be given by formulae (1). If the identity e2 ≡ 1 holds
in a finite group G then G is solvable.

Proof. As above, it is enough to prove that the identity e2 ≡ 1 does not hold in the minimal
non-solvable groups. For G = PSL(3, 3) it is proved above. Let now G = PSL(2, q). Take

x =

(

1 1
0 1

)

, y =

(

1 0
t 1

)

.

with t 6= 0. Then e2(x, y) = A(t) can be viewed as a polynomial matrix in indeterminate t. Its
entry A1,2 equals −2t3(t + 1)f(t), where f(t) = t8 + t7− t6 − 4t5− 8t4 − 5t3 + t2 + 4t + 2. Since
A1,2(t) can only vanish at t = 0, t = −1, and at the roots of f(t), we conclude that for odd
q ≥ 11 the identity e2 ≡ 1 cannot hold in PSL(2, q). For q = 5 and q = 7 we have A1,2(1) 6= 0.
Thus we proved the proposition for G = PSL(2, p) and G = PSL(2, 3p).

Next consider the case G = PSL(2, 2p). Take

x =

(

0 1
1 1

)

, y =

(

t 1
1 0

)

.

As above, we have e2(x, y) = B(t), a polynomial matrix in one variable t running over the finite
field Fq, q = 2p, with B1,2 = t(t8 + 1). One can easily see that B1,2(t) cannot vanish at all
t ∈ Fq.

It only remains to consider the case of Suzuki groups G = Sz(q). We recall (see, for
example, [13, Ch. XI, §3]) that as a subgroup of GL(4, q) the group G is generated by the
following matrices:

S(α, β) =









1 0 0 0
αz 1 0 0
β α 1 0

α2z+1 + αzβ + β2z α1+z + β αz 1









, α, β ∈ Fq,

11

M(ζ) =









ζz 0 0 0
0 ζ1−z 0 0
0 0 ζz−1 0
0 0 0 ζ−z









, ζ ∈ F
∗

q, and J =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









.

Here z = 2
p−1

2 . We now take x = J , y = S(1, t). As above, a straightforward computation
(using MAPLE) gives e2(x, y) as a polynomial matrix C(t). Its entry C4,1(t) equals t2z(tz + 1).
The number of roots of tz + 1 in Fq does not exceed z which is strictly smaller than q − 1, and
thus C4,1(t) cannot vanish at all t ∈ Fq. 2

Remark. Probably one can characterize neither finite nilpotent groups of a fixed class, nor finite
solvable groups of a fixed derived length by means of two-variable identities. For example, there
exists a non-metabelian solvable group G such that all its 2-generator subgroups are metabelian
[16], [9].

Appendix

We present here some results of computer experiments. In Table 1 for each p < 200 we exhibit
one solution (x, y) to the equation e2(x, y) = e4(x, y) where the ei’s are taken from sequence (2).
In the next two tables for p < 80 we present the number of solutions to the above equation for
sequences (1), (2), respectively. Finally, we include the C++ code for the programs computing
the number of solutions.

12

p x y p x y

5

(

0 −1
1 1

) (

−2 −1
1 0

)

7

(

0 −1
1 3

) (

−3 2
−2 1

)

11

(

0 −1
1 1

) (

−5 −5
0 2

)

13

(

0 −1
1 6

) (

−5 −5
−6 −1

)

17

(

0 −1
1 1

) (

−8 −5
3 6

)

19

(

0 −1
1 1

) (

−9 −8
1 5

)

23

(

0 −1
1 11

) (

−11 −11
−10 −8

)

29

(

0 −1
1 5

) (

−14 −13
−6 13

)

31

(

0 −1
1 5

) (

−15 −15
−2 0

)

37

(

0 −1
1 3

) (

−18 −12
11 −3

)

41

(

0 −1
1 12

) (

−20 −14
−3 4

)

43

(

0 −1
1 1

) (

−21 −20
1 5

)

47

(

0 −1
1 16

) (

−23 −21
−20 4

)

53

(

0 −1
1 19

) (

−26 −24
−18 18

)

59

(

0 −1
1 24

) (

−29 −24
23 19

)

61

(

0 −1
1 29

) (

−30 −28
−12 3

)

67

(

0 −1
1 2

) (

−33 −28
17 −12

)

71

(

0 −1
1 34

) (

−35 −32
−26 33

)

73

(

0 −1
1 22

) (

−36 −36
12 14

)

79

(

0 −1
1 29

) (

−39 −39
36 38

)

83

(

0 −1
1 34

) (

−41 −35
−40 −20

)

89

(

0 −1
1 39

) (

−44 −44
38 40

)

97

(

0 −1
1 13

) (

−48 −45
−3 −19

)

101

(

0 −1
1 45

) (

−50 −45
−17 17

)

103

(

0 −1
1 19

) (

−51 −44
8 19

)

107

(

0 −1
1 47

) (

−53 −31
−1 −43

)

109

(

0 −1
1 1

) (

−54 −49
5 −52

)

113

(

0 −1
1 47

) (

−56 −56
−11 −9

)

127

(

0 −1
1 8

) (

−63 −55
−11 −58

)

131

(

0 −1
1 11

) (

−65 −58
13 −65

)

137

(

0 −1
1 11

) (

−68 −54
−59 −65

)

139

(

0 −1
1 1

) (

−69 −68
1 5

)

149

(

0 −1
1 40

) (

−74 −69
20 73

)

151

(

0 −1
1 64

) (

−75 −73
−21 48

)

157

(

0 −1
1 1

) (

−78 −68
10 55

)

163

(

0 −1
1 58

) (

−81 −30
−59 −44

)

167

(

0 −1
1 14

) (

−83 −76
−83 −74

)

173

(

0 −1
1 37

) (

−86 −63
−23 −41

)

179

(

0 −1
1 53

) (

−89 −88
−59 4

)

181

(

0 −1
1 49

) (

−90 −86
−20 3

)

191

(

0 −1
1 88

) (

−95 −85
−41 −95

)

193

(

0 −1
1 84

) (

−96 −94
−62 78

)

197

(

0 −1
1 24

) (

−98 −86
−20 93

)

199

(

0 −1
1 1

) (

−99 −95
4 38

)

Table 1: Solutions to e2 = e4 (formulae (1))

13

p 5 7 11 13 17 19 23 29 31 37
N1 0 84 96 300 668 80 88 360 760 440

p 41 43 47 53 59 61 67 71 73 79
N1 664 848 1312 428 712 480 1616 1432 1168 1904

Table 2: Numbers of solutions to e2 = e4 (formulae (1))

p 5 7 11 13 17 19 23 29 31 37
N2 22 16 134 28 36 304 136 526 670 296

p 41 43 47 53 59 61 67 71 73 79
N2 990 590 760 428 1064 728 402 1136 584 2050

Table 3: Numbers of solutions to e2 = e4 (formulae (2))

//#==#

//# #

//# The sequence U1 = [X,Y]; Un+1 = [[Un,X],[Un,Y]] #

//# #

//# X = ||0 -1|| Y = ||a b|| #

//# ||1 t|| ||c d|| #

//# #

//#==#

//#==#

//# #

//# The program computes the number of the solutions for U2= U4 #

//# or U2=-U4 #

//# for given prime p #

//# #

//#==#

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

//***

void display(long data[][2]);

void multiply(long X[2][2],long Y[2][2],int p);

void inv_X(long X[2][2]);

void inv_Y(long Y[2][2]);

void U_2(long X[2][2],long Y[2][2],int p);

14

void U_3(long X[2][2],long Y[2][2],int p);

void U_4(long X[2][2],long Y[2][2],int p);

void minus_U_4();

void Commutator(long X[2][2],long Y[2][2],int p);

int find_number_of_solutions(int p);

bool equal(long X[2][2],long Y[2][2],int p);

//***

//Global variables

static long C[2][2];

static long U2[2][2];

static long U4[2][2];

static long minus_U4[2][2];

static long U3[2][2];

static long M[2][2];

static long InvX[2][2];

static long InvY[2][2];

static long tmp1[2][2];

static long tmp2[2][2];

static long tmp[2][2];

static long temp1[2][2];

static long temp2[2][2];

FILE *output;

//***

int main(void) {

int p ;

output = fopen("numbers.txt", "a+");

fclose(output);

printf("Enter the prime number P: ");

scanf("%d",&p);

printf("\n");

output = fopen("numbers.txt", "a+");

fprintf(output, "======");

fprintf(output, "P = ");

fprintf(output, "%d", p," ");

fprintf(output,"\n ");

fprintf(output, "The number of solutions is: ");

fprintf(output, "%d", find_number_of_solutions(p)," ");

fprintf(output, "======");

fprintf(output,"\n ");

15

fclose(output);

return(0);

}

//***

void display(long data[2][2]) {

output = fopen("numbers.txt", "a+");

fprintf(output, " \n*********************************\n");

for (int i = 0; i < 2; i++) {

for (int j = 0; j < 2; j++)

{

fprintf(output, "%d", data[i][j]);

fprintf(output, " ");

}

fprintf(output, " \n");

}

fprintf(output, " \n*********************************\n");

fclose(output);

}

//**

void multiply(long X[2][2],long Y[2][2],int p)

{

M[0][0] = (X[0][0]*Y[0][0]+X[0][1]*Y[1][0])%p;

M[0][1] = (X[0][0]*Y[0][1]+X[0][1]*Y[1][1])%p;

M[1][0] = (X[1][0]*Y[0][0]+X[1][1]*Y[1][0])%p;

M[1][1] = (X[1][0]*Y[0][1]+X[1][1]*Y[1][1])%p;

}

//***

void inv_X(long X[2][2])

{

InvX[0][0] = X[1][1];

InvX[0][1] = -X[0][1];

InvX[1][0] = -X[1][0];

InvX[1][1] = X[0][0];

}

void inv_Y(long Y[2][2])

{

InvY[0][0] = Y[1][1];

InvY[0][1] = -Y[0][1];

16

InvY[1][0] = -Y[1][0];

InvY[1][1] = Y[0][0];

}

//**

void Commutator(long X[2][2],long Y[2][2],int p)

{

inv_X(X);

inv_Y(Y);

multiply(InvX,InvY,p);

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

temp1[i][j]=M[i][j];

multiply(temp1,X,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

temp2[i][j]=M[i][j];

multiply(temp2,Y,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

{

C[i][j]=M[i][j];

M[i][j]=0;

}

}

//***

void U_2(long X[2][2],long Y[2][2],int p)

{

Commutator(X,Y,p);

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp[i][j]=C[i][j];

Commutator(tmp,X,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp1[i][j]=C[i][j];

Commutator(tmp,Y,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp2[i][j]=C[i][j];

Commutator(tmp1,tmp2,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

17

U2[i][j]=C[i][j];

}

void U_3(long X[2][2],long Y[2][2],int p)

{

Commutator(U2,X,p);

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp1[i][j]=C[i][j];

Commutator(U2,Y,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp2[i][j]=C[i][j];

Commutator(tmp1,tmp2,p);

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

U3[i][j]=C[i][j];

}

void U_4(long X[2][2],long Y[2][2],int p)

{

Commutator(U3,X,p);

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp1[i][j]=C[i][j];

Commutator(U3,Y,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp2[i][j]=C[i][j];

Commutator(tmp1,tmp2,p);

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

U4[i][j]=C[i][j];

}

void minus_U_4()

{

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

minus_U4[i][j]=-U4[i][j];

}

18

//**

bool equal(long X[2][2],long Y[2][2],int p)

{

if((((X[0][0]-Y[0][0])%p)==0)&&

(((X[0][1]-Y[0][1])%p)==0)&&

(((X[1][0]-Y[1][0])%p)==0)&&

(((X[1][1]-Y[1][1])%p)==0))

return(true);

else

return(false);

}

//**

int find_number_of_solutions(int p)

{

static long E[2][2];

E[0][0]=1;

E[0][1]=0;

E[1][0]=0;

E[1][1]=1;

static long X[2][2];

static long Y[2][2];

int counter =0;

for(int i=(1-p)/2;i<=(p-1)/2;i++)

for(int j=(1-p)/2;j<=(p-1)/2;j++)

for(int m=(1-p)/2;m<=(p-1)/2;m++)

for(int n=(1-p)/2;n<=(p-1)/2;n++)

for(int k=(1-p)/2;k<=(p-1)/2;k++)

{

if (((i*n-j*m-1)%p)==0)

{

X[0][0]=0;

X[0][1]=-1;

X[1][0]=1;

X[1][1]=k;

Y[0][0]=i;

Y[0][1]=j;

Y[1][0]=m;

Y[1][1]=n;

19

U_2(X,Y,p);

U_3(X,Y,p);

U_4(X,Y,p);

minus_U_4();

if((!equal(U3,E,p))&&

((equal(U2,U4,p))||

(equal(U2,minus_U4,p))))

{

counter=counter+1;

}

}

}

return(counter);

}

Figure 1: Program for computing the number of solutions to e2 = e4 (formulae (1))

//#==#

//# #

//# The sequence U1 = [X,Y]; Un+1 = [X^-1*Un*X,Y^-1*Un*Y] #

//# #

//# X = ||0 -1|| Y = ||a b|| #

//# ||1 t|| ||c d|| #

//# #

//#==#

//#==#

//# #

//# The program computes the number of the solutions for U2= U4 #

//# or U2=-U4 #

//# for given prime p #

//# #

//#==#

#include <stdio.h>

#include <math.h>

20

#include <stdlib.h>

//***

void display(long data[][2]);

void multiply(long X[2][2],long Y[2][2],int p);

void inv_X(long X[2][2]);

void inv_Y(long Y[2][2]);

void U_2(long X[2][2],long Y[2][2],int p);

void U_3(long X[2][2],long Y[2][2],int p);

void U_4(long X[2][2],long Y[2][2],int p);

void minus_U_4();

void Commutator(long X[2][2],long Y[2][2],int p);

int find_number_of_solutions(int p);

bool equal(long X[2][2],long Y[2][2],int p);

//***

//Global variables

static long C[2][2];

static long U2[2][2];

static long U4[2][2];

static long U3[2][2];

static long minus_U4[2][2];

static long M[2][2];

static long InvX[2][2];

static long InvY[2][2];

static long tmp1[2][2];

static long tmp2[2][2];

static long tmp3[2][2];

static long tmp4[2][2];

static long tmp[2][2];

static long temp1[2][2];

static long temp2[2][2];

FILE *output;

//***

int main(void) {

int p ;

output = fopen("numbers1.txt", "a+");

fclose(output);

printf("Enter the prime number P: ");

scanf("%d",&p);

21

printf("\n");

output = fopen("numbers1.txt", "a+");

fprintf(output, "======");

fprintf(output, "P = ");

fprintf(output, "%d", p," ");

fprintf(output,"\n ");

fprintf(output, "The number of solutions is: ");

fprintf(output, "%d", find_number_of_solutions(p)," ");

fprintf(output, "======");

fprintf(output,"\n ");

fclose(output);

return(0);

}

//***

void display(long data[2][2]) {

output = fopen("numbers1.txt", "a+");

fprintf(output, " \n*********************************\n");

for (int i = 0; i < 2; i++) {

for (int j = 0; j < 2; j++)

{

fprintf(output, "%d", data[i][j]);

fprintf(output, " ");

}

fprintf(output, " \n");

}

fprintf(output, " \n*********************************\n");

fclose(output);

}

//**

void multiply(long X[2][2],long Y[2][2], int p)

{

M[0][0] = (X[0][0]*Y[0][0]+X[0][1]*Y[1][0])%p;

M[0][1] = (X[0][0]*Y[0][1]+X[0][1]*Y[1][1])%p;

M[1][0] = (X[1][0]*Y[0][0]+X[1][1]*Y[1][0])%p;

M[1][1] = (X[1][0]*Y[0][1]+X[1][1]*Y[1][1])%p;

}

//***

void inv_X(long X[2][2])

{

22

InvX[0][0] = X[1][1];

InvX[0][1] = -X[0][1];

InvX[1][0] = -X[1][0];

InvX[1][1] = X[0][0];

}

void inv_Y(long Y[2][2])

{

InvY[0][0] = Y[1][1];

InvY[0][1] = -Y[0][1];

InvY[1][0] = -Y[1][0];

InvY[1][1] = Y[0][0];

}

//**

void Commutator(long X[2][2],long Y[2][2],int p)

{

//static int temp[2][2];

//static long temp1[2][2];

//static long temp2[2][2];

inv_X(X);

inv_Y(Y);

multiply(InvX,InvY,p);

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

temp1[i][j]=M[i][j];

multiply(temp1,X,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

temp2[i][j]=M[i][j];

multiply(temp2,Y,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

{

C[i][j]=M[i][j];

M[i][j]=0;

}

}

//***

void U_2(long X[2][2],long Y[2][2],int p)

{

Commutator(X,Y,p);

for(int i=0;i<2;i++)

23

for(int j=0;j<2;j++)

tmp[i][j]=C[i][j];

multiply(InvX,tmp,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp1[i][j]=M[i][j];

multiply(tmp1,X,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp2[i][j]=M[i][j];

multiply(InvY,tmp,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp3[i][j]=M[i][j];

multiply(tmp3,Y,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp4[i][j]=M[i][j];

Commutator(tmp2,tmp4,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

U2[i][j]=C[i][j];

}

void U_3(long X[2][2],long Y[2][2],int p)

{

inv_X(X);

inv_Y(Y);

multiply(InvX,U2,p);

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp1[i][j]=M[i][j];

multiply(tmp1,X,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp2[i][j]=M[i][j];

multiply(InvY,U2,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp3[i][j]=M[i][j];

multiply(tmp3,Y,p);

24

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp4[i][j]=M[i][j];

Commutator(tmp2,tmp4,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

U3[i][j]=C[i][j];

}

void U_4(long X[2][2],long Y[2][2],int p)

{

inv_X(X);

inv_Y(Y);

multiply(InvX,U3,p);

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp1[i][j]=M[i][j];

multiply(tmp1,X,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp2[i][j]=M[i][j];

multiply(InvY,U3,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp3[i][j]=M[i][j];

multiply(tmp3,Y,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

tmp4[i][j]=M[i][j];

Commutator(tmp2,tmp4,p);

for(i=0;i<2;i++)

for(int j=0;j<2;j++)

U4[i][j]=C[i][j];

}

void minus_U_4()

{

for(int i=0;i<2;i++)

for(int j=0;j<2;j++)

minus_U4[i][j]=-U4[i][j];

}

//**

25

bool equal(long X[2][2],long Y[2][2],int p)

{

if((((X[0][0]-Y[0][0])%p)==0)&&

(((X[0][1]-Y[0][1])%p)==0)&&

(((X[1][0]-Y[1][0])%p)==0)&&

(((X[1][1]-Y[1][1])%p)==0))

return(true);

else

return(false);

}

//**

int find_number_of_solutions(int p)

{

static long E[2][2];

E[0][0]=1;

E[0][1]=0;

E[1][0]=0;

E[1][1]=1;

static long minus_E[2][2];

minus_E[0][0]=-1;

minus_E[0][1]=0;

minus_E[1][0]=0;

minus_E[1][1]=-1;

static long X[2][2];

static long Y[2][2];

int counter=0;

for(int i=(1-p)/2;i<=(p-1)/2;i++)

for(int j=(1-p)/2;j<=(p-1)/2;j++)

for(int m=(1-p)/2;m<=(p-1)/2;m++)

for(int n=(1-p)/2;n<=(p-1)/2;n++)

for(int k=1;k<=(p-1)/2;k++)

{

if (((i*n-j*m-1)%p)==0)

{

X[0][0]=0;

X[0][1]=-1;

X[1][0]=1;

X[1][1]=k;

Y[0][0]=i;

26

Y[0][1]=j;

Y[1][0]=m;

Y[1][1]=n;

U_2(X,Y,p);

U_3(X,Y,p);

U_4(X,Y,p);

minus_U_4();

if(((!equal(U4,E,p))&&(!equal(U4,minus_E,p)))&&

((equal(U2,U4,p))||

(equal(U2,minus_U4,p))))

{

counter=counter+1;

}

}

}

return(counter);

}

Figure 2: Program for computing the number of solutions to e2 = e4 (formulae (2))

References

[1] R. E. Block, Determination of differentially simple rings with a minimal ideal, Ann. of
Math. (2) 90 (1969), 433–459.

[2] R. E. Block and R. L. Wilson, Classification of the restricted simple Lie algebras, J. Algebra
114 (1988), 115–259.

[3] A. Borel, Linear Algebraic Groups, 2nd ed., Springer-Verlag, Berlin et al., 1991.

[4] R. Brandl, On groups with small Engel depth, Bull. Austral. Math. Soc. 28 (1983), 101–110.

[5] R. Brandl and D. Nikolova, Simple groups of small Engel depth, Bull. Austral. Math. Soc.
33 (1986), 245–251.

[6] J. Cossey, S. Oates Macdonald, and A. P. Street, On the laws of certain finite groups, J.
Austral. Math. Soc. 11 (1970), 441–489.

[7] M. Demazure and P. Gabriel, Groupes Algébriques, Masson, Paris & North-Holland, Am-
sterdam, 1970.

27

[8] P. Flavell, Finite groups in which every two elements generate a soluble group, Invent.
Math. 121 (1995), 279–285.

[9] C. K. Gupta, 2-metabelian groups, Arch. Math. (Basel) 19 (1968), 584–587.

[10] N. D. Gupta, Some group laws equivalent to the commutative law, Arch. Math. (Basel)
17 (1966), 97–102.

[11] N. D. Gupta and H. Heineken, Groups with a two-variable commutator identity, Math. Z.
95 (1967), 276–287.

[12] H. Heineken and P. Neumann, Identical relations and decision procedures for groups, J.
Austral. Math. Soc. 7 (1967), 39–47.

[13] B. Huppert and N. Blackburn, Finite Groups III, Springer-Verlag, Berlin et al., 1982.

[14] G. A. Jones, Varieties and simple groups, J. Austral. Math. Soc. 17 (1974), 163–173.

[15] S. Lang, Algebra, 3rd ed., Addison-Wesley, 1993.

[16] B. H. Neumann, On a conjecture of Hanna Neumann, Proc. Glasgoq Math. Assoc. 3 (1956),
13–17.

[17] H. Neumann, Varieties of Groups, Springer-Verlag, Berlin et al., 1967.

[18] D. Nikolova, Groups with a 2-variable commutator identity, Ph. D. thesis, Sofia Univ.,
1983.

[19] D. Nikolova, Groups with a two-variable commutator identity, C. R. Acad. Bulgare Sci.
36 (1983), 721–724.

[20] D. Nikolova, Solubility of finite groups with a two-variable commutator identity, Serdica
11 (1985), 59–63.

[21] S. Oates and M. B. Powell, Identical relations in finite groups, J. of Algebra 1 (1964),
11–39.

[22] V. P. Platonov and A. S. Rapinchuk, Algebraic Groups and Number Theory, Nauka,
Moscow, 1991; English transl., Academic Press, Boston et al., 1994.

[23] B. Plotkin, E. Plotkin, and A. Tsurkov, Geometrical equivalence of groups, Comm. Algebra
27 (1999), 4015–4025.

[24] A. Potapchik and A. Rapinchuk, Normal subgroups of SL1,D and the classification of finite
simple groups, Proc. Indian Acad. Sci. (Math. Sci.) 106 (1996), 329–368.

[25] Y. Segev, On finite homomorphic images of the multiplicative group of a division algebra,
Ann. of Math. (2) 149 (1999), 219–251.

28

[26] Y. Segev and G. Seitz, Anisotropic groups of type An and the commuting graph of finite
simple groups, to appear.

[27] H. Strade and R. Farnsteiner, Modular Lie Algebras and Their Representations, Marcel
Dekker, New York–Basel, 1988.

[28] J. Thompson, Non-solvable finite groups all of whose local subgroups are solvable, Bull.
Amer. Math. Soc. 74 (1968), 383–437.

[29] B. Weisfeiler, On subalgebras of simple Lie algebras of characteristic p > 0, Trans. Amer.
Math. Soc. 286 (1984), 471–503.

29

